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Abstract

We consider a mechanism design setting in which agents can acquire costly
information on their preferences as well as others’. A mechanism is information-
ally simple if agents have no incentive to learn about others’ preferences. This
property is of interest for two reasons: First, it is a necessary condition for the
existence of dominant strategy equilibria in the extended game. Second, this en-
dogenizes an “independent private value” property of the interim information
structure. We show that, generically, a mechanism is informationally simple if
and only if it satisfies a separability condition which rules out most economically
meaningful mechanisms.
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1 INTRODUCTION

Scholars have long understood that institutions can have a strong impact on
the formation of preferences. Surprisingly little attention, however, has been
paid to how institutions shape the ways in which we constitute our knowl-
edge and acquire information, that is, to how agents’ informational incentives
are affected by institutional rules. This can sometimes be of primary impor-
tance because heterogeneous informational incentives can lead to unequal op-
portunities in voting, labor market outcomes, education choices, investment
decisions, etc. Conversely, little is known about how these informational in-
centives constrain the type of institutions that are actually implementable. In
this paper, we make progress toward addressing these questions.

We investigate what kind of mechanisms lead to simple informational in-
centives, and why simple informational incentives matter for the design of
institutions. We consider good allocation problems in which agents’ valua-
tions for the good are private, and independently drawn. Agents are uncertain
about their preferences, but can acquire information about their preferences as
well as others’ before entering the mechanism. For instance, students facing a
school choice mechanism can not only acquire information on their own pref-
erences for the different schools but also learn about how demanded they are.
Similarly, bidders in an auction mechanism can not only learn about their own
valuation for the good, but also consult firms to gauge the toughness of the
competition. Informational simplicity is defined as acquiring information on
one’s own preferences only, and not on others’.

One might think that strategy-proofness guarantees informational sim-
plicity since it implies agents have a dominant strategy at the interim stage.
Our main result is that this is however not the case: for a large set of infor-
mation acquisition cost functions, and whenever the mechanism violates a
separability condition1—which is the case of most economically meaningful

1Say a mechanism is separable if agents’ reports do not interact with one another in the
allocation function: for all players i, all messages mi,m

′
i ∈ Mi, and all m−i,m′−i ∈ M−i,

the allocation function satisfies xi(mi,m−i) − xi(m′i,m−i) = xi(mi,m
′
−i) − xi(m′i,m′−i). All

standard auction formats and matching algorithms do not satisfy such separability condition.
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mechanisms—, players always have an incentive to learn about others’ pref-
erences even though they are not directly payoff-relevant. In particular, even
strategy-proof mechanisms such as VCG incentivize players to acquire infor-
mation about others. Moreover, we show that such informational incentives
make strategy-proof mechanisms no longer dominance solvable at the ex-ante
stage, when players decide what information to acquire. These results hold
whenever the cost of information satisfies an Inada condition—which makes
it never optimal to become fully informed about any state—and a smoothness
condition—which guarantees that agents can fine-tune the informativeness
of signals without discontinuously changing their cost. Importantly, the re-
sult holds even though players’ underlying preferences are independent and
private. Otherwise, players would have a direct incentive to learn about the
preferences of others as it would be informative on their own preferences.

The intuition behind our main result is the following: The set of outcomes
that a player can bring about, call this her opportunity set, depends on other
players’ reports to the designer, and hence on the entire vector of fundamen-
tals determining the preferences of the population. Since the value of infor-
mation on her own preferences depends on her opportunity set, it indirectly
depends on other players’ preferences as well. If gathering a little bit of in-
formation about others’ preferences is not costlier than learning additional
information about her own, then it is generically optimal for the player to de-
vote resources to acquiring information about others’ preferences first. That
helps her predict others’ report, allowing her to acquire more information on
herself when it is more valuable.

Finally, we explore the implications of our result for mechanism design.
First, it appears that strategic simplicity, as captured by strategy-proofness,
is more limited than previously thought. Much of the literature focuses on
strategic simplicity at the interim stage, that is once players have acquired
their private information. Our results show that strategy-proofness does not
guarantee strategic simplicity at the ex-ante stage of information acquisition:
Indeed, only informationally simple mechanisms admit equilibria in domi-
nant strategies in the extended game. This is one argument as to why in-
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formational simplicity might be valuable in practice: It ensures agents have
a dominant strategy when deciding what information to acquire, leading to
more robust predictions and fewer strategic mistakes. However, our main
result implies that only separable mechanisms satisfy such property.

Second, a direct corollary of our main result is that the standard Indepen-
dent Private value (IPV) assumption is unlikely to arise endogenously. Of
course, this assumption is usually understood as a technically convenient ap-
proximation of reality—nothing more. Nevertheless, our result makes pre-
cise why this is unlikely to hold in practice, and why departures from IPV in
the standard framework lead to discontinuities such as Crémer and McLean
(1988)’s full surplus extraction result. Instead, our approach restores a form
of continuity: Side bets at the interim stage distort information acquisition at
the ex-ante stage—in particular, side bets prevent the efficient amount of in-
formation acquisition. Hence constrained surplus extraction is feasible, but full
surplus extraction is not because players internalize the informational incen-
tives generated by side bets.

Related Literature. A first strand of the literature investigates information
acquisition with fixed mechanisms. Persico (2000) proves a representation
theorem for the demand for information in several auction formats. Berge-
mann et al. (2009) show that with interdependent values the equilibrium level
of information acquisition is inefficient under VCG. More recently, Bobkova
(2019) investigates the incentives to learn about private versus common value
components in auctions.

A second strand of the literature investigates optimal mechanism design
with information acquisition. Bergemann and Välimäki (2002) show that in a
standard allocation problem with monetary transfers, private values, and in-
formation acquisition on own preferences only, VCG is ex-ante efficient. Hat-
field et al. (2018) strengthen this result by showing that strategy-proofness
is also necessary for ex-post efficient mechanisms to induce ex-ante efficient
information acquisition. Interestingly, a corollary of our result is that VCG
induces ex-ante inefficient information acquisition when agents are allowed to
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learn about others’ preferences in addition to their own, as it endogenously
leads to interdependent values at the interim stage. In combination with Je-
hiel and Moldovanu (2001), this shows the infeasibility of implementing the
efficient allocation.

In school choice settings, Immorlica et al. (2018) look for mechanisms that
are stable and induce students to acquire information efficiently. Roesler and
Szentes (2017) and Ravid et al. (2022) consider monopoly pricing when buy-
ers can flexibly acquire information. In their papers, the seller chooses the
mechanism after the buyer chooses her information strategy, whereas in our
paper the designer ex-ante commits to a mechanism. Hence in their model the
buyer must internalize the seller’s strategy, whereas in our paper the designer
must internalize agents’ future decisions (what we refer to as “informational
incentives”). Mensch (2022) considers a screening problem with informational
incentives and characterizes the optimal mechanism.

Most of the literature investigates information acquisition on one’s own
preferences only.2 In this paper, we allow agents to acquire information on
others as well, and investigate when it would be optimal for them to do so.

2 MOTIVATING EXAMPLE

Two bidders compete in a Second-Price auction to acquire a good. Contrary
to the standard approach, bidders are uncertain about their valuation for the
good. Bidder 1’s valuation is either high ω1 ∈ Ω1 or low ω1 ∈ Ω1, and similarly
for bidder 2. We denote the state space by Ω = Ω1 × Ω2, and suppose agents’
valuations are independently drawn from a uniform distribution, so all four
states are equally likely. Let ω1 > ω2 > ω1 > ω2, such that if bidders knew
their own valuation for the good and played their dominant strategy, bidder
2 would only win the auction in state (ω1, ω2).

2A notable exception is Larson and Sandholm (2001) in the computer science literature.
They introduce a model in which agents can devote computational resources to discover their
own as well as others’ valuation. For several auction formats, they show that players compute
the valuation of others in equilibrium.
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Bidders can engage in costly information acquisition about ω = (ω1, ω2) ex
ante. Importantly, they can privately acquire information on any fundamen-
tal, and hence not only learn about their own valuation but also about the
other bidder’s if they wish to. Information is costly, and bidders trade-off the
value and cost of information upon acquiring it. For this example only, we
consider the entropic cost function, which has been introduced in the rational
inattention literature. Informally, the cost of information is proportional to the
expected reduction in uncertainty as measured by the entropy of beliefs:

cost of information = λ
(

prior entropy− E[posterior entropy]
)

where λ is a scaling parameter. This cost function satisfies the key assump-
tions we impose for our main result: it is smooth, and the marginal cost of
becoming fully informed is unbounded (Inada condition). We discuss the ne-
cessity of these assumptions later.

We look for an equilibrium in which both agents only learn about their
own valuation for the good.3 For the sake of the example, suppose that each
agent’s optimal information acquisition strategy leads her to hold one of two
posterior beliefs upon entering the auction: one that puts more weight on
states in which she has a high valuation ωi = ω̄i, and the other more weight on
states where ωi = ωi. Let mi be agent i’s equilibrium bid at the former belief,
andmi her equilibrium bid at the latter. So in equilibrium, either agent i learns
that state ω̄i is more likely, in which case she submits a high bid mi, or that ωi
is more likely, in which case she bids mi. Suppose that m1 > m2 > m1 > m2,
reflecting the ordering of agents’ underlying values.4

3There are also equilibria in which no agent acquires information. For instance, if agent
1 always bids ω1 and agent 2 always bids zero, then neither has an incentive to acquire in-
formation and no one wants to deviate. Such equilibrium however yields an outcome that is
independent of the state ω—namely, agent 1 always gets the good at zero price. Hence the
designer could have achieved the same outcome by using a constant (and hence separable)
mechanism that simply allocates the good to agent 1 for free.

4It cannot be that mi > mj > mj > mi, as that implies agent j’s two equilibrium bids
always lead to the same outcome: she loses if i bids high and wins if i bids low. Hence agent
j’s two bids are outcome-equivalent, and j cannot find it optimal to acquire costly information
to distinguish between them. The only other possible case is then whenm2 > m1 > m2 > m1,
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Do agents have an incentive to acquire information on the opponent’s val-
uation for the good? We show that the answer is yes, even though the mech-
anism is strategy-proof at the interim stage, and agents’ valuations ω1, ω2 are
private and independently distributed. To see this, take the perspective of
agent 2. In states where ω1 = ω1, her opponent is likely to make a high bid m1

ensuring her the object, and learning about her own valuation has no benefit
for 2. On the contrary, in states where ω1 = ω1, bidder 2’s bid impacts the
outcome of the auction, and hence information on ω2 is valuable. Similarly,
when ω2 = ω2, agent 1 knows that her valuation is higher so does not need
acquiring any information on her preferences. When ω2 = ω2, she could have
a higher or lower valuation than agent 2’s most likely bid, and so informa-
tion on ω1 is valuable. This shows that the value of information on one’s own
preferences depends on the realized state for the other. Whether or not agents
acquire information on others in equilibrium naturally depends on the cost
of information. In particular, agents should not incur a discontinuously high
cost upon learning about others, which would offset the associated benefits.
Furthermore, agents should not always want to become fully informed of their
own preferences, but should instead equate value and cost of information at
the margin.

For the sake of tractability, we characterize what the equilibrium converges
to as the scaling parameter λ goes to zero.5 Agents’ equilibrium strategies are
summarized in Table 1.

and the following reasoning follows verbatim, just exchanging indices across agents.
5This simplifies the analysis of the example as it ensures both agents do in fact acquire

information in equilibrium. Following Matějka and McKay (2015), we know that equilibrium
strategies follow a logit rule under the entropic cost function:

Pr(m1|ω1, ω2) =
Pr(m1)

Pr(m1) + Pr(m1) exp
[
− 1

λ Pr(m2|ω1, ω2) (ω1 −m2)
]

Pr(m2|ω1, ω2) =
Pr(m2)

Pr(m2) + Pr(m2) exp
[
− 1

λ

(
1− Pr(m1|ω1, ω2)

)
(ω2 −m1)

] .
These logit rules make the interdependency between both agents’ strategies explicit. For in-
stance, the equilibrium probability agent 2 bids m2 in state (ω1, ω2) is decreasing in the prob-
ability her opponent will submit a high bid in that state Pr(m1|ω1, ω2).
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Table 1: Equilibrium strategies

(ω1, ω2) (ω1, ω2) (ω1, ω2) (ω1, ω2)

Pr(m1|ω1, ω2) 1 1
2

0 1
2

Pr(m2|ω1, ω2) 1
3

0 1 0

Agent 1 receives the correct signal, and hence submits the correct bid,
whenever the other’s valuation is high, as this is when information makes
a difference: Pr(m1|ω1, ω2) −→ 1 and Pr(m1|ω1, ω2) −→ 0. Reciprocally, agent
2 submits the correct bid whenever agent 1 submits a low bid with non-zero
probability, as this is when information is valuable to 2. An interior probabil-
ity reflects the fact that the agent is indifferent between the two bids in that
state. For instance, in state (ω1, ω2), agent 2 is indifferent between bidding
high and low as she never wins the auction anyway. Then, optimally, agent
2 does not condition her behavior on this state: Pr(m2|ω1, ω2) = Pr(m2) =

0.25
∑

ω Pr(m2|ω) which yields Pr(m2|ω1, ω2) = 1/3.6

Despite the auction being strategy-proof, each bidder still has an incentive
to learn about the opponent’s valuation, to assess how much she should learn
about her own valuation. Hence strategy-proofness is not enough to guaran-
tee informational simplicity, which illustrates our main finding: a mechanism
is informationally simple if and only if it is de facto separable, i.e. agents’
reports do not interact with one another to determine the allocation. For in-
stance, in the above example, the seller could offer the good to agent 1 at price

6For this to be an equilibrium, agent 1 must find it optimal to win the auction at price m2

when her signal recommends her to bid m1. Similarly, when her signal recommends her to
bid low, she must be content with losing against bid m2 but winning against m2. Overall that
requires

E[ω1 | m1] > m2 > E[ω1 | m1] > m2 ⇐⇒
3

4
ω1 +

1

4
ω1 > m2 >

1

4
ω1 +

3

4
ω1 > m2.

Similarly, for agent 2 not to have an incentive to deviate, it must be that

m1 > E[ω2 | m2] > m1 > E[ω2 | m2] ⇐⇒ m1 > ω2 > m1 >
1

4
ω2 +

3

4
ω2.
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ω2, and if 1 refuses, give it to agent 2 at price ω2. This is a dictatorial mech-
anism, which hence satisfies our separability condition, as only agent 1 can
influence the outcome. It is also informationally simple: agent 1 only wants to
learn whether her value is above ω2, and agent 2 does not want to acquire any
information at all.

3 SETUP

Environment. We consider good allocation problems with transferable utili-
ties. A single item needs to be allocated to one of n agents. Let N = {1, . . . , n}
be the set of agents. There is a finite set of possible states of the world, or
fundamentals, that has a product structure Ω = ×i∈N Ωi, with |Ωi| > 2.7

Each player’s preferences for the good depend on her own fundamental only:
ui ∈ Ui ⊆ RΩi , with Ui being the open set of possible preferences for i. The
prior probability distribution µ0 ∈ ∆Ω is common knowledge among the play-
ers and the designer, and satisfies independence: µ0(ω) =

∏
i∈N µ

i
0(ωi) where

the superscript µi corresponds to the marginal on dimension ωi. Should play-
ers’ preferences depend on the entire vector of fundamentals, or should the
fundamentals be correlated, we could not make the distinction between player
i acquiring information on her preferences or on others’. Our assumptions en-
sure that statements such as “player i acquires information on player j” have a
proper meaning. Moreover, they guarantee that agent i does not have a direct
interest in acquiring information on ω−i. Hence in what follows, an agent’s
payoff will depend on others’ fundamentals ω−i only indirectly through the
mechanism.

Though we state our results for good allocation problems, they easily ex-
tend to more general settings in which there is an abstract set of outcomes and
agents have arbitrary preferences over these outcomes. The results also extend
to environments without transfers (e.g., matching). We focus on good alloca-

7We assume that Ω is finite for simplicity, but it does not appear to drive our results. We
can allow for |Ωi| = 2 under an additional restriction on the cost of information (see Remark
1).
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State ω is
drawn from µ0

Designer announces Γ

Information
strategy πi

Update belief
to µi(ω)

Reporting
strategy σi(·|µi)

Allocation and transfer
Eσi(·|µi),σ−i(·|µ−i)[xi(mi,m−i)]

Eσi(·|µi),σ−i(·|µ−i)[ti(mi,m−i)]

Figure 1: Timing of the game

tion problems and quasi-linear utilities for ease of exposition, and to make our
impossibility result stronger as transfers give more leeway to the designer.

Mechanism. A designer ex-ante commits to a mechanism. A mechanism Γ

consists of a finite set of messages for each player Mi, as well as allocation
functions and transfer functions:

xi : M1 × · · · ×Mn −→ [0, 1]

ti : M1 × · · · ×Mn −→ R

with
∑

i xi(m) ≤ 1 for all m ∈ M1 × · · · ×Mn. The ex-post utility of agent i in
state ω under message profile m is quasi-linear in the transfer:

xi(m)ui(ωi)− ti(m).

Strategies. At the ex-ante stage, players can acquire costly information about
any state.8 Information acquisition is represented by choosing a distribution
over posterior beliefs πi ∈ ∆∆Ω that is consistent with the prior Eπi [µi] = µ0.9

At the interim stage, players send a message to the designer conditional on
8We assume information acquisition is covert for simplicity. None of our results would

change if agents could observe the information structure chosen by others before sending
their message.

9This formulation is equivalent to agents choosing a privately observed signal that can be
arbitrarily correlated with the state. Indeed, any signal leads to a specific distribution over
posterior beliefs. Reciprocally, any distribution over posteriors πi satisfying this martingale
property can be achieved by choosing an appropriate signal (Kamenica and Gentzkow, 2011).
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their realized posterior belief µi. Let σi : ∆Ω −→ ∆Mi denote agent i’s re-
porting strategy. Figure 1 describes the timing of the game. Without loss of
generality, we directly work with probability distributions over messages con-
ditional on states: Pi : Ω −→ ∆Mi. This object is obtained from (πi, σi) using
Bayes’ rule:10

Pi(mi | ω) =
∑

µi∈supp πi

σi(mi | µi)
µi(ω)

µ0(ω)
πi(µi),

where supp πi denotes the support of πi. (Similar notation is used to denote
the set of messages in the support of a choice rule Pi.) In words, the informa-
tion strategy and reporting strategy (πi, σi) lead player i to send message mi

in state ω with probability Pi(mi | ω). The more an agent’s choice rule in state
ω differs from that in state ω′, the more agent i acquires information to distin-
guish between states ω and ω′. Conversely, a choice rule Pi that is independent
of ω can be implemented without acquiring any information about the state.

A Nash Equilibrium is a strategy profile (P ∗i )i∈N such that, for all i ∈ N ,

P ∗i ∈ arg max
Pi∈(∆Mi)Ω

∑
ω∈Ω

µ0(ω)EPi(·|ω),P ∗−i(·|ω) [xi(mi,m−i)ui(ωi)− ti(mi,m−i)]− c(Pi)

where c : (∆Mi)
Ω −→ R is the cost of information acquisition associated with

the least informative distribution over posteriors πi that implements Pi.11 This
implicitly assumes that more information (in Blackwell’s order) is costlier, and

10Without loss, an optimal information strategy puts weight on at most |Mi| posteriors, and
so we can assume that the support of πi is finite.

11Any information and reporting strategies (πi, σi) induce a unique choice rule Pi. Con-
versely, given a choice rule Pi, there exists a least informative distribution over posteriors πi
that implements it, in the sense that all other distributions π′i that implement Pi are mean pre-
serving spreads of πi. Intuitively, given any choice rule Pi, there exists a minimal amount of
information the agent has to acquire to be able to correlate her reports to the state as specified
by Pi. The least informative πi associated with Pi is derived from Bayes rule in the following
way. For all mi ∈ suppPi let

µmi
i (ω) =

Pi(mi|ω)µ0(ω)∑
ω′ Pi(mi|ω′)

be i’s posterior when she reports mi to the designer. Then suppπi = {µmi
i |mi ∈ suppPi} and

πi(µ
mi
i ) =

∑
ω Pi(mi|ω).
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hence that agents would never buy more information than they need to im-
plement Pi. The above formulation makes clear that information on ω−i can
only be valuable to player i if it helps her predict others’ equilibrium report
P ∗−i(·|ω). Existence of a Nash Equilibrium in pure strategies derives from
standard argument, given the assumptions we impose on the cost of infor-
mation.12

Assumptions on the Cost Function. As mentioned above, we assume that
more information (in Blackwell’s order) is costlier. A choice rule P requires
more information to be implemented than P ′ if P ′ can be derived by adding
noise to P . Formally, P ′ is a garbling of P if there exists a positive, column-
stochastic matrix [Λmi,m′i

]mi,m′i such that P ′(·|ω) = ΛP (·|ω) for all ω.

Assumption 1 (Monotonicity). If P ′ is a garbling of P , then c(P ′) < c(P ).

Such monotonicity assumption is standard in the literature. Second, we as-
sume that the cost function is smooth—excluding kinks and jumps,—allowing
players to fine-tune the informativeness of signals. A stochastic choice rule is
interior if its support is the same across all states: suppPi(·|ω) = suppPi(·|ω′)
for all ω, ω′. Equivalently, a choice rule is interior if player i’s posterior belief
always has full support—i.e., player i does not need to rule out some state of
the world with certainty in order to implement Pi.

Assumption 2 (Smoothness). c is twice continuously differentiable and convex
over the set of interior stochastic choice rules.

This ensures that all partial derivatives of c exist and are continuous. In
particular, it rules out the possibility that learning about others’ preferences

12As agents’ strategy spaces (∆Mi)
Ω are compact, continuity and convexity of the cost c

ensure that best-responses are well-behaved—upper hemicontinuous, non-empty, compact
and convex valued—by the Theorem of the Maximum. Kakutani’s fixed point theorem then
guarantees the existence of an equilibrium. Any mixing between two pure strategies P and
P ′ cannot be strictly optimal as it can always be replicated by a pure strategy at lower cost
as soon as c is convex. Note that this does not imply an agent’s reporting strategy σi never
involves some mixing in equilibrium: conditional on some posterior µi, an agent might send
multiple messages with positive probabilities, but this still translates into a pure choice rule
Pi.
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is discontinuously costlier than learning about oneself. More generally, there
is no discontinuous change in c, or in the partial derivatives of c, upon learn-
ing a bit about others—e.g., the marginal cost associated with sending some
message mi more often in state ω is continuous in Pi, and does not jump when
moving from an informationally simple choice rule Pi to one that is not. Ab-
sent this assumption, it is easy to find examples in which agents never acquire
information on others, e.g. take a large fixed cost on acquiring information on
ω−i that dominates any benefit from obtaining the good. Since this smooth-
ness assumption is key to our main result, we discuss and relax it in Section
4.1.

Third, we assume that the marginal cost of information goes to infinity
when a player becomes fully informed about any fundamental (though the
total cost can be bounded). This Inada condition guarantees that players’ op-
timal choice rules are interior.

Assumption 3 (Inada Condition). For all P̂i such that P̂i(mi|ω) = 0 and P̂i(mi|ω′) >
0 for some mi, ω, ω

′,

lim
Pi→P̂i

∂c(Pi)

∂Pi(mi|ω)
= −∞.

In the statement of Assumption 3, P̂i is a corner choice rule as agent i needs
to know with probability one that state ω has not realized in order to imple-
ment it. The condition then requires that the marginal cost of this strategy is
unbounded, which implies that it is never optimal at equilibrium. Absent this
assumption, we can construct environments in which it is always optimal for
agents to become fully informed about their own preferences, as soon as they
have some impact over the outcome. Then, in any strategy-proof mechanism,
agents would not have an incentive to acquire information on others.

Finally, we impose that if ω−i is directly and indirectly payoff irrelevant
to agent i—think of a dictatorial mechanism where i is the dictator—then
player i has no incentive to acquire information on ω−i. This condition is only
necessary for the converse of our main result, i.e. to show that a separable
mechanism is informationally simple. To define this condition formally, let
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Vi(mi, ω|P−i,Γ) = EP−i(·|ω)

[
x(mi,m−i)ui(ωi)− ti(mi,m−i)

]
be i’s expected pay-

off from sending message mi in state ω given some P−i and mechanism Γ, and
denote by P ∗i an optimal choice rule for player i.

Assumption 4 (Independence of Irrelevant States). For any mechanism Γ and
any strategy of others P−i, the following must hold: If Vi(mi, (ωi, ω−i)|P−i,Γ) is
independent of ω−i for all mi, then so is P ∗i (·|ωi, ω−i).

In words, if an agent’s payoff is independent of some dimensions of the
state space, then it is not optimal to learn about these payoff-irrelevant di-
mensions and the induced optimal choice rule does not depend on them. This
relates to other assumptions brought forward in the literature.13 This assump-
tion in particular rules out the possibility that learning about ωi is cheaper if
one also learns about ω−i.

The most notable example of a cost function satisfying all four conditions
is the entropic cost function, which we considered in the motivating example.

Example 1 (Entropic Cost). Sims (2003) proposes a cost function based on Shan-
non’s entropy which measures a signal’s informativeness as the expected reduction in
entropy. The entropic cost associated with a stochastic choice rule Pi writes

c(Pi) = −
∑

mi∈suppPi

Pi(mi) logPi(mi) +
∑
ω∈Ω

µ0(ω)
∑

mi∈suppPi

Pi(mi|ω) logPi(mi|ω),

where Pi(mi) =
∑

ω Pi(mi|ω)µ0(ω) is the unconditional probability of sending mes-
sage mi under Pi. Intuitively, the more the agent’s choice rule Pi(· | ω) varies across
states ω, the higher the cost, as more information about ω is needed to implement it.

13Independence of irrelevant states is related to but weaker than “invariance under com-
pression” (Caplin et al. (2022)), which is known to hold for the entropic cost function. In-
variance under compression requires that splitting a state into two payoff-equivalent states
should not change how costly it is to learn about it. In particular, splitting a state ωi into |Ω−i|
payoff-equivalent states should not change agent i’s optimal strategy, which is our above
condition. Our condition only requires the cost function to be invariant under compression
of some dimensions of the state space (i.e., only of Ω−i), which is reminiscent of a similar
condition in Hébert and La’O (2020). Our notion of independence to irrelevant states is con-
ceptually distinct from prior independence of the cost function. In our setting, agents’ prior
belief µ0 is fixed, and so whether the cost of information depends on it or not is immaterial.
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We end this section with a comment on static vs. dynamic information ac-
quisition. In our model, agents’ choices are static: they simultaneously choose
a choice rule Pi, or equivalently a signal and a reporting strategy. This is, how-
ever, not restricting the manner in which agents can acquire information per
se. Indeed, any dynamic information acquisition process can be reduced to a
single, appropriately chosen, signal. For a large class of cost functions, such
reduction is without loss as it leads to a weakly lower overall cost of informa-
tion.14 This is for instance the case of the entropic cost function, which can be
interpreted as the reduced-form expected cost of an optimal binary search tree
over the state space.

4 THE GENERIC COMPLEXITY OF

INFORMATIONAL INCENTIVES

In this section we address the following question: Which mechanisms provide
players with simple informational incentives, i.e. incentives to only acquire
information on their own preferences? We show that players have simple
informational incentives if and only if the mechanism is de facto separable.

Informational simplicity is captured by the following refinement of Nash
equilibrium.

Definition 1. An Informationally Simple Equilibrium (ISE) is a Nash equilib-
rium (P ∗i )i∈N such that, for all i, Pi is independent of ω−i.15

This refinement is of interest for several reasons. First, informational sim-
plicity captures a notion of strategic simplicity which is a priori distinct from
strategy-proofness. As it turns out, we will show that informational simplicity
is a necessary condition for ex-ante strategy-proofness of the extended game
that includes the information acquisition stage. Second, players’ interim in-
formation structure satisfies the Independent Private value (IPV) assumption

14See Zhong and Bloedel (2020) for a characterization of cost functions satisfying this prop-
erty.

15Equivalently, the signal that agent i acquires is independent of ω−i.
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if and only if the equilibrium is informationally simple. Hence our analysis
shades light on whether we should expect such information structure to arise
endogenously.

Given others’ strategy P ∗−i, player i chooses a stochastic choice rule Pi so as
to solve the following program:

max
Pi:Ω→∆Mi

∑
ω∈Ω

µ0(ω)EPi(·|ω),P ∗−i(·|ω)

[
xi(mi,m−i)ui(ωi)− ti(mi,m−i)

]
− c(Pi).

Conditional on acquiring some information, the first-order conditions with re-
spect to Pi(mi|ω)µ0(ω) yield necessary restrictions on player i’s best response:
for all mi in the support of P ∗i and for all ω ∈ Ω,

EP ∗−i(·|ω)

[
xi(mi,m−i)ui(ωi)− ti(mi,m−i)

]
+
γi(ω)

µ0(ω)
=

∂c(P ∗i )

∂P ∗i (mi|ω)µ0(ω)
,(?)

where γi(ω) is the Lagrange multiplier associated with the constraint that the
choice rule Pi(·|ω) must sum to one. The left-hand side captures the marginal
gain from sending message mi in state ω (had player i been fully informed of
the state), rather than any other message m′i. The Lagrange multiplier γi(ω) is
indeed the shadow price of the constraint that the choice rule sums to one, and
hence captures the fact that sending mi more often implies sending m′i 6= mi

less often. The right-hand side represents the marginal cost associated with
sending message mi more often in state ω.

To better understand this trade-off, suppose that the cost of any informa-
tion is very high: then players send only one message that maximizes their
average payoff across states. Conversely, if the marginal cost is sufficiently
low, then agents send exactly the payoff maximizing message in each state
as in a game with perfect information. Hence, for intermediate costs, players
achieve a trade-off between the gains from sending the optimal message and
the cost associated with discovering what is the optimal message.

We can rearrange and substitute out the Lagrange multiplier to obtain an
interpretation of the FOC in terms of value of information. Take the FOC with
respect to Pi(m

′
i | ω)µ0(ω) and substract from the previous FOC. This gives
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the marginal gain from reporting mi relative to m′i in state ω, net of marginal
costs:

EP ∗−i(·|ω)

[
xi(mi,m−i)ui(ωi)− ti(mi,m−i)− [xi(m

′
i,m−i)ui(ωi)− ti(m′i,m−i)]

]
=

∂c(P ∗i )

∂P ∗i (mi|ω)µ0(ω)
− ∂c(P ∗i )

∂P ∗i (m′i|ω)µ0(ω)
.

In general the value of information for i seems to depend on other agents’
reports, as m−i impacts the chosen outcome. In an informationally simple
equilibrium, however, player i’s strategy must be independent of ω−i. This re-
quires the value of information for player i to be independent of other players’
realized state.

We now show that this independence cannot generically be satisfied unless
the mechanism is de facto separable. A statement holds generically if it is false
only for a set of utilities U0 ⊆×i

Ui whose closure has Lebesgue measure
zero.16 A mechanism is separable if agents’ reports do not interact with one
another in the allocation function: for all i, all mi,m

′
i ∈ Mi, and all m−i,m′−i ∈

M−i,
xi(mi,m−i)− xi(m′i,m−i) = xi(mi,m

′
−i)− xi(m′i,m′−i).

Hence others’ report m−i can only impact the level in i’s outcome, but cannot
interact with how i’s report affects her outcome. Note that if i cannot influence
the outcome altogether, then the condition is trivially satisfied as both sides of
the equations are always zero. More generally, it can be that several agents
influence the outcome with positive probability, but never jointly—e.g., the
mechanism might randomly (and independently of reports m) pick a dictator
i∗ and condition the outcome on her report mi∗ only. Finally, say a mecha-
nism Γ is de facto separable under equilibrium P ∗ if there exists a separable
mechanism Γ̂ and an equilibrium P̂ ∗ of Γ̂ that is outcome equivalent.17

16Mathematical genericity does not necessarily imply genericity “in practice” and very
much depends on the chosen universe of preferences. We show that Informational Simplicity
is only feasible for preferences that are non-generic, within the open set of allowed prefer-
ences×i

Ui. But the set of preferences that are relevant in practice could be itself small and
non-generic.

17That is, an equilibrium P̂ ∗ of Γ̂ leads to the same state-dependent allocation:
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In most settings of interest, the goal of running a mechanism is precisely to
aggregate agents’ information, and to choose an allocation based on all pieces
of information jointly. Yet we show that this is generically incompatible with
informational simplicity.

Theorem 1. Fix any mechanism Γ. Generically, if P ∗ is an Informationally Simple
equilibrium of Γ, then Γ is de facto separable under P ∗.

Conversely, if both the outcome functions and transfer functions of Γ are separa-
ble,18 then all equilibria of Γ are Informationally Simple.

Theorem 1 states that informational simplicity is generically impossible to
achieve under most mechanisms of interest. Whenever the mechanism is not
de facto separable, it is generically impossible to design transfers that incen-
tivize agents to only learn about themselves. The economic intuition is that
players have uncertainty about their “opportunity set,” i.e. which outcomes
they can bring about. Their opportunity set depends on others’ preferences,
which makes it valuable to condition how much they learn about their own
preferences on the realization of others’. That allows them to acquire more
information on their own preferences when the stakes are higher—i.e., when
they face a larger opportunity set.19 Doing so is free at the margin, as the
smoothness of the cost function implies it has no discontinuous jump or kink
when agents start acquiring information on others. In the proof, we show that
this interdependence between the value of information for i and others’ pref-
erences is so rich that it cannot be offset by appropriately designed transfers.∑
m̂∈M̂

∏
i P̂
∗
i (m̂i|ω)x̂i(m̂) =

∑
m∈M

∏
i P
∗
i (mi|ω)xi(m) for all i, ω.

18That is ti(mi,m−i) − ti(m′i,m−i) = ti(mi,m
′
−i) − ti(m′i,m′−i) for all i, mi, m′i ∈ Mi, m−i,

m′−i ∈ M−i, and similarly for (xi)i. Note that our baseline definition of separability only
imposes restrictions on the outcome functions (xi)i. This may however not be enough to
guarantee Informational Simplicity, as interdependencies in transfers (ti)i might incentivize
agents to learn about each other. For instance, if transfers generate a coordination game across
agents, then agents might coordinate on conditioning their play on one particular agent’s state
ωi, which then implies all agents j 6= i learn about another person.

19Note that agents do not care about others’ preferences ω−i per se, but only because it
helps them predict others’ report to the designer. Hence if agents were allowed to acquire
information on what others know—i.e. their posterior beliefs µ−i—as in Denti (2018), then
they would do so instead of learning about their underlying preferences ω−i.
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Note that under an interim strategy-proof mechanism, agents want to learn
about others only because it helps them assess how much they should learn
about themselves. Hence it is important for Theorem 1 that agents do not
know their own preferences, and that becoming fully informed on their own
preferences is never optimal by the Inada condition. It is also essential that
agents be able to condition how much they learn about themselves on what
they learn about others. This is most intuitive if learning is sequential—e.g.,
if agents first buy a signal about ω−i and then, conditional on its realization,
buy a signal on ωi. This is captured by our framework as c can be interpreted
as the reduced-form cost of an optimal dynamic process of information acqui-
sition.20

The necessity part of the theorem is not a statement about the primitives: if
P ∗ is an Informationally Simple equilibrium of Γ then the mechanism need not
be separable, but under P ∗ the mechanism acts as if it were separable.21 For in-
stance, when the value of information is very small for all but one player, it is
very possible that even if all agents can impact the outcome in the mechanism,
only one decides to acquire information in equilibrium. The designer could
have then replicated the induced outcome by running a dictatorial mecha-
nism, in which only that agent’s private information would have been elicited.
That being said, the theorem is sufficient for mechanism design purposes: the
point is that informational simplicity is impossible to achieve unless the de-
signer’s objective does not require eliciting multiple agents’ information and
using it jointly to decide on the outcome. Whether or not the mechanism is
truly separable or only separable de facto is immaterial.

Remark 1. The assumption of independence of irrelevant states (Assump-
tion 4) only comes into play to prove that under a separable mechanism, all
equilibria are informationally simple (sufficiency). Indeed, under a separa-
ble mechanism, others’ preferences ω−i are (directly and indirectly) payoff-
irrelevant to agent i. Hence her choice rule is independent of ω−i only if As-

20See the discussion at the end of Section 3.
21Any separable mechanism—such as a dictatorial mechanism—is de facto separable, but

every non-separable mechanisms—such as VCG—can also be de facto separable.
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sumption 4 holds. This is for instance the case under the entropic cost (Exam-
ple 1). Even though we do not need Assumption 4 to prove the necessity part
of Theorem 1, imposing it simplifies the proof greatly. In the Appendix, we
include both the general proof that does not require Assumption 4, and the
shorter one that does. In the latter, we can dispense of the assumption that
|Ωi| > 2.

A Knife-Edge Example. We now go through a knife-edge case for which our
main result does not hold. Indeed, since the latter is a genericity result, there
exists a degenerate set of utility functions under which a mechanism can be
both informationally simple and non-separable.

There are three goods {A,B,C} to be allocated to two agents {i, j}.22 For
simplicity, there are no transfers. The mechanism used is a simultaneous ver-
sion of the serial dictatorship: Agents report their preferences, agent i gets her
favorite good, then agent j her favorite good among the remaining ones.

Agent i’s most preferred good is either A or B: ui = (uiA, uiB, uiC) ∈
{(4, 2, 1), (2, 4, 1)}. Agent j always values good A and B equivalently: uj ∈
{(2, 2, 0), (0, 0, 2)}. An agent’s allocation xi = (xiA, xiB, xiC) specifies with
which probability she receives each good. Agent i and j each have two pos-
sible messages they can send to the designer: Mi = {mA,mB} and Mj =

{mAB,mC}. Intuitively, think of a message ml as indicating to the designer
that the agent wants good l. The allocation function is given in Table 2.

Table 2: Allocation Function

xi(mi,mj) mAB mC

mA (1, 0, 0) (1, 0, 0)

mB (0, 1, 0) (0, 1, 0)

xj(mi,mj) mAB mC

mA (0, 1, 0) (0, 0, 1)

mB (1, 0, 0) (0, 0, 1)

22Knife-edge examples with only one good are more complex and require non-zero trans-
fers, and so we give one with several goods for ease of exposition.
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As in the motivating example, consider the entropic cost function. We
know that optimal choice rules then follow a logit rule (Matějka and McKay
(2015)). Since agent i’s allocation does not depend on agent j’s report, she only
learns about her own preferences in equilibrium: the equilibrium probability
that i reports mA in state ω equals

P ∗i (mA|ω) =
P ∗i (mA) exp[ 1

λ
uiA(ωi)]

P ∗i (mA) exp[ 1
λ
uiA(ωi)] + P ∗i (mB) exp[ 1

λ
uiB(ωi)]

,

with P ∗i (ml) =
∑

ω P
∗
i (ml|ω). Note that it is independent of ωj : agent i does

not acquire any information about j’s preferences. More surprisingly, agent j
also only learns about her own preferences, despite the fact that her allocation
is impacted by i’s report: the equilibrium probability that j reports mAB in
state ω equals

P ∗j (mAB|ω) =
P ∗j (mAB) exp[ 1

λ
ujA(ωj)]

P ∗j (mAB) exp[ 1
λ
ujA(ωj)] + P ∗j (mC) exp[ 1

λ
ujC(ωj)]

,

which is independent of ωi.23 That is because her utility function has some
symmetry that makes the value of information on ωj independent of mi. In-
deed, if agent i picks goodA, agent j is left choosing betweenB andC, and the
utility value of making the correct choice is 2. Similarly, if agent i picks good
B, agent j is left choosing between A and C, and the utility value of mak-
ing the correct choice is, again, 2. The equilibrium is informationally simple,
even though two agents acquire information and jointly impact the outcome
in equilibrium.

23To derive this logit rule, we use the same formula as for the motivating example: agent j
reports mAB in state ω with probability

P ∗j (mAB) exp[ 1
λ ((1− P ∗i (mA|ω))ujA(ωj) + P ∗i (mA|ω)ujB(ωj))]

P ∗j (mAB) exp[ 1
λ ((1− P ∗i (mA|ω))ujA(ωj) + P ∗i (mA|ω)ujB(ωj))] + P ∗j (mC) exp[ 1

λujC(ωj)]
,

which simplifies to the above expression since ujB(ωj) = ujA(ωj) in all states ωj .
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4.1 Discussion on Fixed Costs

The proof of Theorem 1 leverages the assumption that the cost of informa-
tion is smooth. This seems to be a relevant approximation in some settings.
For instance, consider a school choice problem in which students must send
a rank-order list of schools to a central authority, and can beforehand acquire
information on the different schools. They can learn about their own prefer-
ences over schools—e.g., by looking at the set of courses offered and whether
they look interesting to them—but also about others’—e.g., by asking about
the popularity of the school, and admission cutoffs. Arguably, acquiring some
information about a school’s popularity is not very costly.

A natural concern is that in other settings, the smoothness assumption
may be missing relevant factors, and in particular overlooks the possibility
that learning about others may be discontinuously harder than learning about
oneself. This would mechanically make Informational Simplicity easier to
achieve, and we investigate the robustness of Theorem 1 to such discontinuity.

Consider the same smooth cost of information as in our main setup, but
suppose that as soon as an agent decides to learn a bit about others, it has to
pay an additional fixed cost κ. Fix an arbitrary mechanism Γ and let UIS(κ) ⊆
×i
Ui be the set of utility functions for which (i) there exists an informationally

simple equilibrium P ∗ of Γ, and (ii) Γ is not de facto separable. Let ρ(κ) be the
Lebesgue measure of UIS(κ).

Proposition 1. For any mechanism Γ, ρ(κ) is increasing and continuous in κ, with
ρ(0) = 0.

Theorem 1 corresponds to the corner case in which κ = 0: It is generi-
cally impossible to design a mechanism that admits an informationally simple
equilibrium and that is non-separable under that equilibrium. As κ increases,
the set of preferences for which informational simplicity can be achieved by
non-separable mechanisms grows. Interestingly, it grows continuously, so our
benchmark with κ = 0 is not a knife-edge case: Adding a small cost to learning
about others does make informational simplicity easier to achieve, but only in
very few settings. It is only as κ tends to infinity that informational simplicity
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becomes generically feasible.

5 IMPLICATIONS FOR MECHANISM DESIGN

5.1 The Limits of Strategy-Proofness

Strategic simplicity is valued in mechanism design for robustness and for lev-
eling the playing field across players. A lot of attention has been given to in-
terim strategy-proof mechanisms, i.e., mechanisms under which agents have
a dominant strategy at the interim stage, taking as given their private informa-
tion. Formally, interim strategy-proofness requires that, for all i and µi, there
exists mi ∈Mi such that

xi(mi,m−i)Eµi [ui(ωi)]− ti(mi,m−i)

≥ xi(m
′
i,m−i)Eµi [ui(ωi)]− ti(m′i,m−i) ∀m′i ∈Mi,m−i ∈M−i.

Little is known, however, about the strategic complexity of the acquisition
of agents’ private information at the ex-ante stage. This is important as many
inequalities may arise due to suboptimal information acquisition and strategic
mistakes.

Say a mechanism is ex-ante strategy-proof if agents have a dominant strat-
egy in the overall game that includes the information acquisition stage. For-
mally, for all agent i, there exists a choice rule Pi such that

EPi,P−i [xi(m)ui(ωi)− ti(m)]− c(Pi)

≥ EP ′i ,P−i [xi(m)ui(ωi)− ti(m)]− c(P ′i ) ∀P ′i ∈ (∆Mi)
Ω, P−i ∈ (∆M−i)

Ω.

We show that informational simplicity is a necessary condition for ex-ante
dominance solvability.

Proposition 2. Fix any mechanism Γ. If P ∗ is an equilibrium in dominant strategy
of Γ, then P ∗ is informationally simple.
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The standard notion of strategy-proofness ensures that agents have a dom-
inant strategy once they have acquired information, but the stronger require-
ment of Informational Simplicity is needed to guarantee agents also have a
dominant strategy when choosing what information to acquire. The intuition
behind Proposition 2 is that information about others is valuable because it
helps predict their reports at the interim stage. Hence if an agent learns about
another, her equilibrium information strategy has to depend on the strategy
of the other player: the mechanism is not ex-ante dominance solvable.

Together, Proposition 2 and Theorem 1 yield that, generically, there ex-
ists an equilibrium in dominant strategy of Γ only if Γ is de facto separable.
Therefore, in the extended game that includes information acquisition, agents
virtually never have a dominant strategy under non-separable mechanisms.

5.2 Independent Private Values

A direct corollary of Theorem 1 is that the standard Independent Private value
assumption is unlikely to arise endogenously.

Corollary 1. Fix any mechanism Γ. Generically, the equilibrium posterior beliefs
(µi, µ−i) are (unconditionally) independent across players only if Γ is de facto separa-
ble.

Therefore the interim information structure is endogenously correlated,
which creates interdependent values across players. Put differently, the IPV
assumption does not arise endogenously whenever the mechanism is non-
separable and the technology of information acquisition satisfies our condi-
tions.

Why has research in mechanism design been limited to the IPV case de-
spite the practical importance of information correlation? A theoretical argu-
ment due to Crémer and McLean (1988) suggests that as soon as there is some
correlation in agents’ ex-ante private information,24 the designer can extract
all surplus by constructing appropriate side bets. This result highlights that

24Formally, whenever the matrix of the conditional probabilities of other players’ signals
conditional on one’s own signal has full rank.
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the independence of private information across players is necessary for them to
earn an information rent as in Myerson (1981). The limits of that result to risk
aversion, limited liability, collusion among the agents, etc. have been explored
extensively. However what has been explored less is how such results rely on
the exogenous nature of private information: If agents anticipate the designer
will exploit the correlation structure in their information, why would they ac-
quire such information in the first place? We show that full surplus extraction
(in Nash equilibrium) is generically impossible to achieve when taking into ac-
count informational incentives. Therefore, our main result together with the
impossibility of full surplus extraction suggest that there is room for studying
mechanism design with correlated information.

First, we need to properly define what full surplus extraction means in
a setting where private information is endogenous. We say full-surplus ex-
traction is feasible if there exists a mechanism that can extract the maximal
surplus that can be generated in the economy. Namely, given an environment
and a technology of information acquisition, there exists a maximal total sur-
plus that can be generated, which balances total gains from the allocation and
total information costs. Full surplus extraction requires that we reach an equi-
librium that generates this surplus, and then extract it entirely using transfers.

As in Crémer and McLean (1988), there is one good to be allocated. (Our
result easily extends to multiple goods.) Let the ex-post efficient allocation
at belief profile µ = (µi)i∈N be the allocation that maximizes total expected
welfare:

x∗(µ) ∈ arg max
x∈∆N

∑
i∈N

∑
ω∈Ω

µi(ω)ui(ωi)xi.

The maximum total surplus that can be generated in the economy equals:

Max. Total Surplus = max
P∈×i Pi

∑
i∈N

∑
ω∈Ω

µ0(ω)EPi,P−i
[
x∗i (µ)ui(ωi)

]
− c(Pi),

where Pi = {Pi ∈ (∆Ω)Ω | µi(ω) = Pi(µi|ω)µ0(ω)∑
ω′ Pi(µi|ω′)µ0(ω′)

∀µi ∈ suppPi} is the set of
distribution over beliefs that are consistent with Bayes’ rule. Let P † be a strat-

25



egy profile that maximizes total surplus. Note that if P † is informationally
simple—that is, it is socially efficient to have agents acquiring information on
themselves only—then using side bets to extract all surplus is trivially pre-
cluded. However, we know from Theorem 1 that this is generically not the
case whenever the ex-post efficient allocation is non-separable on the support
of P †.25 Hence, whenever efficiency requires that multiple agents learn about
their valuations for the good, P † is generically not informationally simple: it
is more efficient for an agent to condition her learning about herself on others’
valuations so as to save on information costs whenever possible. In most set-
tings of interest, the information structure that maximizes total surplus then
exhibits interdependent beliefs across agents, and allows in principle for the
possibility of side bets à la Crémer McLean. We however show that extract-
ing all surplus is generically infeasible, as the anticipation of such side bets
distorts agents’ incentive to acquire information ex ante.

A (direct revelation) mechanism26 extracts the full surplus if it induces an
equilibrium P ∗ such that:∑

i∈N

∑
ω∈Ω

µ0(ω)EP ∗i ,P ∗−i [ti(µi, µ−i)] = Max. Total Surplus,

while satisfying incentive and individual rationality constraints. Incentive
constraints are of two sorts here: agents should be incentivized to reveal their
private information to the designer at the interim stage, and should find it op-
timal to acquire the socially efficient level of information at the ex-ante stage.
The former is the standard IC constraint in mechanism design, and from now
on, suppose it holds. The latter, which is the one limiting the possibility of full

25Indeed, if P † is informationally simple, then we can design a mechanism which is infor-
mationally simple and not de facto separable, by settingMi = suppP †i , x(µi, µ−i) = x∗(µ) and
transfers such that Eµ0,P

†
−i(·|ω) [ti(µi, µ−i)] = −Eµ0,P

†
−i(·|ω)[

∑
j 6=i x

∗
j (µ)uj(ωj)]. Such a mecha-

nism can however exist only for a non-generic set of preferences.
26The standard Revelation Principle applies in our setting: If (P ∗i )i∈N , or equivalently

(π∗i , σ
∗
i )i∈N , is an equilibrium of Γ then there is an outcome-equivalent direct revelation mech-

anism Γ̂ in which the principal elicits agents’ beliefs M̂i = suppπ∗i and commits to implement-
ing their equilibrium strategy (x̂(µi, µ−i)), t̂(µi, µ−i)) = (x(σ∗(µi, µ−i)), t(σ

∗(µi, µ−i))).
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surplus extraction in this setting, writes:∑
ω∈Ω

µ0(ω)EP †i ,P †−i [x∗i (µ)ui(ωi)− ti(µi, µ−i)]− c(P †i )

≥
∑
ω∈Ω

µ0(ω)EPi,P †−i [x∗i (µ)ui(ωi)− ti(µi, µ−i)]− c(Pi) for all Pi, i.

Finally, the mechanism should satisfy the following ex-ante and interim indi-
vidual rationality constraints:∑

ω∈Ω

µ0(ω)EP †i (·|ω),P †−i(·|ω) [x∗i (µ)ui(ωi)− ti(µi, µ−i)]− c(P †i ) ≥ 0 for all i.∑
ω∈Ω

µi(ω)EP †−i(·|ω) [x∗i (µ)ui(ωi)− ti(µi, µ−i)] ≥ 0 for all i, µi ∈ suppP †i .

Hence to extract the full surplus, the mechanism must (i) induce agents to
acquire the socially efficient level of information, (ii) pick the ex-post efficient
allocation given reported posterior beliefs, and (iii) have transfers that extract
all surplus net of information acquisition costs. The last two requirements are
familiar from Crémer and McLean (1988), whereas the first one is new but
necessary to make sense of ex-post efficiency.

Observe that in some extreme cases full surplus extraction is possible. For
instance, consider a setting in which the efficient allocation is the same in ev-
ery state ω. This means that x∗(µ) = x∗ is independent of agents’ posterior
beliefs and that the efficient information strategy is to acquire no information
at all. The mechanism that always selects outcome x∗ irrespective of agents’
reports, and has transfers ti =

∑
ω µ0(ω)x∗iui(ωi) is individually rational, in-

centive compatible, and extracts full surplus.
However informational incentives generically limit the possibility of full

surplus extraction whenever it is efficient for agents to acquire some informa-
tion. To prove this, we show that the three requirements exposed above trans-
late into necessary conditions that are generically mutually incompatible. We
first focus on requirements (i) and (ii) of full surplus extraction, namely that
the mechanism induces socially efficient information acquisition and imple-
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ments the ex-post efficient allocation. Conditional on P †−i, agent i’s optimal
strategy solves:

max
Pi

∑
ω∈Ω

µ0(ω)EPi,P †−i
[
x∗i (µ)ui(ωi)− ti(µi, µ−i)

]
− c(Pi).

The standard approach to incentivize efficient information acquisition is to
use VCG transfers, such that an agent’s expected transfer upon reporting µi

equals others’ expected payoff at that report:

Eµ0,P
†
−i(·|ω) [ti(µi, µ−i)] = −Eµ0,P

†
−i(·|ω)

[∑
j 6=i

x∗j(µi, µ−i)uj(ωj)

]
.

We show that such transfers are actually the only one inducing agents to ac-
quire the socially efficient level of information. This result is reminiscent
of Hatfield et al. (2018) who extend the Green–Laffont–Holmström theorem
by showing that VCG mechanisms with ex-ante costly investments are the
unique efficient and strategy-proof mechanisms. To obtain a Crémer-McLean
mechanism and enforce the third requirement of full surplus extraction, the
designer would need to add side-bets bi :×j 6=i ∆Ω −→ R. Such side bets,
however, generically distort informational incentives, that is incentives to ac-
quire the efficient level of information. This reduces the total surplus gener-
ated by the mechanism, preventing full surplus extraction.

Theorem 2. Suppose that it is socially efficient for at least one agent to acquire some
information. Then full surplus extraction is generically infeasible.

The feasibility of full surplus extraction with information acquisition re-
ceived mixed answers in the literature. For instance, Bikhchandani (2010)
shows that when the set of signals agents can acquire on others’ type is small
enough, then full surplus extraction is feasible. Instead, when the set of sig-
nals is large enough, then full surplus extraction becomes impossible. Our
result confirms that when information acquisition is sufficiently flexible (in
our case, fully flexible) then full surplus extraction seems impossible.

In this section, we took an ex-ante perspective to full surplus extraction,
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requiring that the mechanism extracts the maximal surplus that can be gen-
erated in the economy. Another approach would be to ask whether full ex-
traction of ex-post surplus is possible: Does there exist a mechanism such that,
in equilibrium, the ex-post efficient allocation is implemented and all the as-
sociated surplus is extracted from agents? Here the answer is always yes:
the constant mechanism that always picks the efficient allocation at the prior
x∗(µ0) and has transfers equal to ti =

∑
ω µ0(ω)x∗i (µ0)ui(ωi) induces no infor-

mation acquisition, and does extract all ex-post surplus in equilibrium. Even
if we restrict attention to equilibria in which agents acquire some information,
it seems to be always possible to find a mechanism extracting all ex-post sur-
plus in equilibrium. This, however, is no guarantee on the magnitude of the
surplus that is extracted by the seller: it can very well be that the generated
surplus in equilibrium is very small.

6 CONCLUSION

In this paper, we investigate players’ informational incentives in mechanism de-
sign, namely how the choice of the mechanism impacts what information
players acquire in equilibrium. A mechanism is informationally simple if
players have no incentives to acquire information on others’ preferences. Our
main result is that, for any smooth technology of information acquisition sat-
isfying an Inada condition, a mechanism is Informationally Simple if and only
if it is de facto separable. Separability means that agents’ report cannot interact
with one another in the allocation function, which rules out many economi-
cally meaningful mechanisms, and in particular all standard auction formats.
This result holds generically, that is for an open set of preferences that has
full measure. The intuition is that the outcomes a player can bring about in
a mechanism depend on others’ report, which makes it optimal to acquire
information on them before investing in information acquisition on her own
preferences.

This result has two implications for mechanism design. First, we show
that a mechanism is ex-ante dominance solvable only if it has an informa-
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tionally simple equilibrium, hence only if the mechanism is de facto separa-
ble. This points to a limitation of strategy-proofness as a concept of strategic
simplicity. Indeed, even interim strategy-proof mechanisms incentivize play-
ers to acquire information about others and to best respond to beliefs about
opponents’ play at the ex-ante stage. Second, our result suggests that the in-
dependent private value assumption is unlikely to arise endogenously. This,
however, does not mean full surplus extraction is possible using side bets as in
Crémer and McLean (1988), as these would distort players’ incentives when
acquiring information.

There are several avenues for future research. One source of information
acquisition that we ignored is communication among players. On one hand,
our result suggests that some players would benefit from information aggre-
gation in a communication stage after the information acquisition stage, as
players endogenously hold information relevant to others. On the other hand,
adding such a communication stage would modify informational incentives
and free-riding may arise in the information acquisition stage. This raises an
interesting question: Under what conditions does communication facilitate
implementation and would arise endogenously from a coalition of players?

These considerations suggest that informational incentives may have im-
portant and concrete implications for the design of institutions—many of which
remain unexplored to this day.

APPENDIX A PROOFS

Proof of Theorem 1. We start by the proof of necessity, which is more involved
than that of sufficiency. The general proof does not leverage Assumption 4,
and easily extends to more general settings than allocation problems with a
single good. There however exists a much more straightforward proof of ne-
cessity if we impose Assumption 4, and we give this shorter proof at the end.

Proof of Necessity. By contradiction, suppose that there exists an IS equilib-
rium P ∗ of Γ but Γ is not de facto separable under P ∗.
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First we show that, because Γ is not de facto separable, at least two play-
ers must acquire information in equilibrium. By definition, if Γ is not de
facto separable, then there exist no mechanism Γ̂ that is separable and in-
duces the same state-dependent outcome as Γ. In particular, the direct rev-
elation mechanism Γ̂ associated with equilibrium P ∗ of Γ is non-separable.
Let M∗

i ≡ {mi |
∑

ω P
∗
i (mi|ω) > 0} be the set of messages i sends with pos-

itive probability in equilibrium and µmii (·) ≡ (Pi(mi|·)µ0(·))/(
∑

ω′ P
∗
i (mi|ω′))

her belief when she sends mi. The direct revelation mechanism asks agents
to report their equilibrium beliefs M̂i ≡ {µmii |mi ∈ M∗

i } and implements the
same outcome as Γ: x̂(µmii , µ

m−i
−i ) = x(mi,m−i).27 By construction, there exists

an equilibrium P̂ of Γ̂ that replicates P ∗ in the following sense: supp P̂ ∗i = M̂i

and P̂ ∗i (µmii |ω) = P ∗i (mi|ω) for allmi, ω. Hence if P ∗ is Informationally Simple,
then so is P̂ ∗.

For this direct revelation mechanism not to be separable, there must exist
an agent i such that |M̂i| ≥ 2 and |M̂−i| ≥ 2, and

x̂i(µ
mi
i , µ

m−i
−i )− x̂i(µ

m′i
i , µ

m−i
−i ) 6= x̂i(µ

mi
i , µ

m′−i
−i )− x̂i(µ

m′i
i , µ

m′−i
−i )

for some µmii , µ
m′i
i ∈ M̂i, µ

m−i
−i , µ

m′−i
−i ∈ M̂−i. This has several implications.

First, it must be that µmii 6= µ
m′i
i , i.e. that agent i’s belief when reporting

mi is different from her belief when reporting m′i in equilibrium P ∗i . This
means P ∗i (mi|·) 6= P ∗i (m′i|·) and ensures that i does acquire some informa-
tion in equilibrium. Similarly, it must be that µm−i−i 6= µ

m′−i
−i and hence that

P ∗−i(m−i|·) 6= P ∗−i(m
′
−i|·). This ensures that other agents also acquire informa-

tion, and that the way they do so impacts how much agent i can influence the

27It can be that µmi
i = µ

m′i
i for some m′i,mi ∈ M∗i . This is the case if i randomizes over

several messages at some posterior belief. In that case, the direct revelation mechanism im-
plements the same randomization:

x̂(µmi
i , µ

m−i

−i ) =
∑

m′i∈M∗i (mi)

P ∗i (m′i)∑
m′′i ∈M∗i (mi)

P ∗i (m′′i )
x(m′i,m−i),

where M∗i (mi) = {m′i ∈ M∗i | µ
m′i
i = µmi

i } is the set of messages that i sends with positive
probability at posterior µmi

i .
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outcome. From now on, we focus on the incentives of this particular agent i
and work with the direct revelation mechanism.

Second, we show that, for almost all preferences of i in Ui, i’s optimal
strategy is not informationally simple. That is, generically, there does not
exist transfers t̂i ∈ RM̂ such that the strategy P̂ ∗i that solves i’s system of
FOCs (?) is informationally simple. Since what matters for agent i is how
her preferences compare from one state to another, we fix agent i’s prefer-
ences in some arbitrarily chosen state ui(ω

0
i ) and show that for almost all

(ui(ωi))ωi 6=ω0
i
∈ U−ui(ω

0
i )

i ≡ {(ui(ωi))ωi 6=ω0
i
|(ui(ω0

i ), (ui(ωi))ωi 6=ω0
i
) ∈ Ui}, i’s opti-

mal strategy is not IS. To do so, consider the FOCs (?) corresponding to agent
i and messages in M̂i. Since we know that these messages are sent with pos-
itive probability in equilibrium, we can ignore the non-negativity constraints
on equilibrium probabilities. By the Inada condition we furthermore know
that the equilibrium stochastic choice rule P̂ ∗i must be interior, and hence that
these FOCs must hold with equality. Note that the endogenous variables in
the FOCs are not only the agent’s choice rule P̂i but also the Lagrange multipli-
ers γi. To avoid carrying the multipliers around in the analysis, we substitute
them out by choosing an arbitrarily message m0

i ∈ M̂i, and subtracting the
FOC for message m0

i to the FOCs for messages mi ∈ M̂i \ {m0
i }. Agent i’s

FOCs then write

EP̂ ∗−i(·|ω)

[
(x̂i(mi,m−i)− x̂i(m0

i ,m−i))ui(ωi)− (t̂i(mi,m−i)− t̂i(m0
i ,m−i))

](?)

− ∂c(P̂i)

∂P̂i(mi|ωi)µ0(ω)
+

∂c(P̂i)

∂P̂i(m0
i |ωi)µ0(ω)

= 0,

for all ω, all mi ∈ M̂i \ {m0
i }.28

One can think of a choice rule P̂ ∗−i as a matrix [P̂ ∗−i(m−i|ω)](m−i,ω) where a
row corresponds to the probability of sending a particular messagem−i ∈ M̂−i

28We denote a generic element of M̂i by mi (and not µmi
i as in the first part of the proof) to

keep the notation uncluttered. Since we are working with the direct revelation mechanism, a
message mi ∈ M̂i is a belief.
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in each state. Since we know that some j 6= i acquires some information in
equilibrium, and hence has at least two possible posterior beliefs, it must be
that rank P̂ ∗−i ≥ 2. Furthermore, given that the equilibrium is IS, it has to
be that rank P̂ ∗−i ≤ |Ω−i|. It might however be that rank P̂ ∗−i < |Ω−i|, if for
instance some j acquires no information about ωj . If this is the case, there
must exist Ω∗−i ⊂ Ω−i such that |Ω∗−i| = rank P̂ ∗−i, and for all ω−i /∈ Ω∗−i there
exist (α(ω′−i))ω′−i∈Ω∗−i

such that

P̂ ∗−i(·|ω−i) =
∑

ω′−i∈Ω∗−i

α(ω′−i)P̂
∗
−i(·|ω′−i).

Intuitively, Ω∗−i is the relevant subset of states over which others’ equilibrium
strategy vary—i.e., that others’ strategy can span. Restrict attention to the
FOCs associated with some state of others ω−i ∈ Ω∗−i—if no IS solution exists
to that restricted system of equations, then no solution exists to the overall
system.

The designer has full flexibility in designing the transfers t̂i, but we show
that this is not enough to ensure that the solution P̂ ∗i to the system of FOCs (?)
is IS. Note that transfers enter agent i’s FOCs only through

EP̂ ∗−i(·|ω−i)
[
(t̂i(mi,m−i)− t̂i(m0

i ,m−i))
]
≡ T̂i(mi, ω−i).

This highlights two things. First, we can normalize i’s transfers associated
with one particular message, for instance t̂i(m0

i , ·), as only the relative payoff
between sending one message instead of another matters for i’s optimal strat-
egy. Second, by tweaking the transfers, the designer can never make them
depend more on ω−i than P̂ ∗−i, since they only depend on others’ preferences
through their equilibrium strategy. Hence the vector of (expected) transfers is
effectively an element of R(|M̂i|−1)×|Ω∗−i| ≡ T .

Let P ≡ (∆M̂i)
Ωi and define Φ : P × T × U−ui(ω

0
i )

i −→ R(|M̂i|−1)×|Ωi|×|Ω∗−i| as
the function that maps stochastic choice rules with support M̂i, and transfers
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(P̂i, T̂i) ∈ P × T together with preferences ui ∈ U
−ω0

i
i to the following vector:

EP̂ ∗−i(·|ω−i)
[
(x̂i(mi,m−i)− x̂i(m0

i ,m−i))ui(ωi)
]
− T̂i(mi, ω−i)

− ∂c(P̂i)

∂P̂i(mi|ωi)µ0(ω)
+

∂c(P̂i)

∂P̂i(m0
i |ωi)µ0(ω)

for allmi ∈ M̂i\{m0
i }, ωi ∈ Ωi, ω−i ∈ Ω∗−i. Importantly, i’s stochastic choice rule

is informationally simple by assumption, and thus belongs to R(|M̂i|−1)×|Ωi|.
Therefore we have

dimP × T = (|M̂i| − 1)× (|Ωi|+ |Ω∗−i|).

The FOCs for agent i can be written as Φ(P̂ ∗i , T̂i;ui) = 0. Hence, the set of IS
stochastic choice rules (together with transfers) which solve the agent’s FOCs
is Φ−1(0;ui). We show that this set is a manifold of negative dimension, and
hence is empty, for almost all ui ∈ U

−ui(ω0
i )

i . Since this is true irrespective of the
normalization we choose for ui(ω0

i ) and because Ui =
⋃
ω0
i
ui(ω

0
i ) × U

−ui(ω0
i )

i ,
this implies that there exists no IS solution to i’s system of FOCs for almost
all preferences in i’s overall set of possible preferences Ui. This is done by
successively applying the Transversality theorem (to show that the non-linear
equations in this system are locally linearly independent at 0 for almost all ui),
and the Regular Value theorem (to show that the solution set is a manifold of
negative dimension).29

In order to apply the Transversality theorem we need to show that 0 is a
regular value of Φ, i.e. that the Jacobian of Φ at 0 has full rank: Φ(P̂i, T̂i;ui) =

0 =⇒ rankDΦ(P̂i, T̂i;ui) = min{(|M̂i| − 1) × |Ωi| × |Ω∗−i|, dimP × T +

dimU−ui(ω
0
i )

i } where D is the Jacobian. Intuitively, this is equivalent to show-
ing that the number of locally linearly independent equations of the system
evaluated at 0 is maximal. Note that DΦ has (|M̂i| − 1) × |Ωi| × |Ω∗−i| rows—
one for each FOC, so one for eachmi ∈ M̂i\{m0

i }, ωi ∈ Ωi, and ω−i ∈ Ω∗−i—and

29Mas-Colell (1989) Chapter 1 (section H) and especially Chapter 8 provide an introduction
to differential topology. A formal statement of the results we use here can be found on page
320.
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dimP × T + dimU−ui(ω
0
i )

i columns—each corresponding to the derivative of Φ

with respect to one element of (P̂i, T̂i;ui). We show that the columns of DΦ

are linearly independent.
The Jacobian of Φ has some simplifying structure, as many of its entries are

zero. First, the columns associated with the derivatives w.r.t. P̂i correspond to
the Hessian of the cost of information, as P̂i only enter the FOCs through the
marginal cost:30

DP̂i
Φ =

[
∂2c(P̂i)

∂P̂i(m0
i |ω)µ0(ω)∂P̂i(m′i|ω′)µ0(ω′)

− ∂2c(P̂i)

∂P̂i(mi|ω)µ0(ω)∂P̂i(m′i|ω′)µ0(ω′)

]
((mi,ω),(m′i,ω

′))

.

Second, since each T̂i(mi, ω−i) only enters the FOCs of agent i associated with
sending message mi when others’ fundamentals are ω−i, the columns asso-
ciated with the derivatives w.r.t. T̂i form a block diagonal matrix with each
block corresponding to one message mi for agent i and one state of others ω−i:

DT̂i
Φ =



BT̂i
(mi, ω−i) 0 . . .

0
. . .

... BT̂i
(m′i, ω−i) 0

0
. . .


Each block BT̂i

(mi, ω−i) is simply a |Ωi|-vector of ones. Indeed, each row
corresponds to a possible state ωi ∈ Ωi and the derivative of agent i’s FOC
w.r.t. T̂i(mi, ω−i) is one.

Similarly, since each ui(ωi) only enters the FOCs of agent i in state ωi, the
columns associated with its derivative have non-zero entries only for rows
that correspond to FOCs in state ωi. For these rows, the derivative equal∑

m−i∈M̂−i

P̂ ∗−i(m−i | ω−i)(x̂i(mi,m−i)− x̂i(m0
i ,m−i)).

30DP̂i
denotes the restriction of the Jacobian corresponding to the derivative w.r.t. Pi.
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We first argue that the columns of DP̂i,T̂i
are linearly independent. Note that

the columns corresponding to derivatives w.r.t. T̂i are independent of ωi,
and thus are constant across rows that differ only by ωi. On the contrary,
∂2c(P̂ ∗i )/∂P̂ ∗i (mi|ωi)µ0(ω)2 varies with ωi since i acquires information in equi-
librium, and it is thus impossible to express the first sets of columns (corre-
sponding to derivatives w.r.t. P̂i) in terms of the second (corresponding to
derivatives w.r.t. T̂i). Furthermore, the columns corresponding to derivatives
w.r.t. T̂i are also linearly independent since they form a block-diagonal matrix,
with each block being composed of a single column.

We now show that the columns of Dui are linearly independent from those
of DP̂i,T̂i

. Using a similar argument as above, derivatives w.r.t. ui must be lin-
early independent from those w.r.t. P̂i as the former depend on ω−i whereas
the latter do not. Indeed, and as discussed above, the fact that Γ̂ is not de facto
non-separable implies

∑
m−i∈M̂−i P̂

∗
−i(m−i | ω−i)(x̂i(mi,m−i)−x̂i(m0

i ,m−i)) must
vary with ω−i ∈ Ω∗−i. The main thing to prove is that the columns of Dui

are linearly independent from the columns corresponding to derivatives w.r.t.
T̂i. Recall that only (ui(ωi))ωi 6=ω0

i
are parameters here, as ui(ω0

i ) is normal-
ized to some fixed and arbitrary value. Hence all rows corresponding to
FOCs in state ω0

i must have zero entries in DuiΦ. All other entries equal∑
m−i∈M̂−i P̂

∗
−i(m−i | ω−i)(x̂i(mi,m−i) − x̂i(m

0
i ,m−i)), and could be replicated

using theDT̂i
Φ columns by weighting by

∑
m−i∈M̂−i P̂

∗
−i(m−i | ω−i)(x̂i(mi,m−i)−

x̂i(m
0
i ,m−i)) the column corresponding to the derivative w.r.t. T̂i(mi, ω−i).

However, this would need to generate a zero entry for state ω0
i which is pos-

sible only if
∑

m−i∈M̂−i P̂
∗
−i(m−i | ω−i)(x̂i(mi,m−i)− x̂i(m0

i ,m−i)) = 0 for all mi,
which cannot be true in a non-separable mechanism.31

Thus, if Γ̂ is not de facto separable, DΦ(P̂i, T̂i;ui) has full rank and 0 is a
regular value of Φ. The Parametric Transversality theorem states that, except
for a nullset U−ui(ω

0
i )

i ⊂ U−ui(ω
0
i )

i of preferences, 0 is a regular value of Φ(·;ui).
Then by the Regular Value theorem, Φ−1(0;ui) is a smooth manifold of dimen-

31Indeed, if that were true, then i’s message would effectively have no effect on her outcome
in equilibrium, and she could not find it optimal to acquire information.
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sion

dim Φ−1(0;ui) = (|M̂i| − 1)× (|Ωi|+ |Ω∗−i|)− (|M̂i| − 1)× |Ωi| × |Ω∗−i| < 0

whenever |Ωi| > 2. Therefore we conclude that, for a full measure set of pref-
erences U−ui(ω

0
i )

i \ U−ui(ω
0
i )

i , the set of IS stochastic choice rules (together with
transfers) solving the FOCs is empty. Let U0

i ≡ ∪ω0
i
ui(ω

0
i ) × U

−ui(ω0
i )

i be the
overall set of preferences for i for which there is an IS solution to i’s system
of FOCs. Since U−ui(ω

0
i )

i has Lebesgue measure zero for each possible normal-
ization of ui(ω0

i ), the overall set of preferences U0
i ⊂ Ui for which i has an

informationally simple optimal strategy is null as well.
We have left to show that U0

i is closed, or equivalently that Ui \ U0
i is open.

Take any ui ∈ Ui \ U0
i . By definition, for these preferences, there does not

exist transfers that make i’s optimal strategy Informationally Simple. That
is, there does not exist (P̂i, T̂i) such that Φ(P̂i, T̂i;ui) = 0. Let ‖·‖ denote the
Euclidean distance, and note that the minimum of ‖Φ(·;ui)‖ is reached for
some (P̂i, T̂i) ∈ P×T . Indeed, any large enough T̂i or boundary choice rule P̂i
sends ‖Φ(·;ui)‖ to infinity, and so we can restrict attention to a compact subset
ofP×T to find a minimizer of ‖Φ(·;ui)‖. Since ‖Φ(·;ui)‖ is continuous on such
compact subset, it must reach a minimum. Let δ ≡ min(P̂i,T̂i)

‖Φ(P̂i, T̂i;ui)‖,
with δ > 0 by assumption. Take any ε ∈ (0, δ(|M̂i|)−1/2), and consider any
u′i ∈ Ui such that ‖ui − u′i‖ < ε. Then, for any (P̂i, T̂i),

‖Φ(P̂i, T̂i;ui)− Φ(P̂i, T̂i;u
′
i)‖

=

(∑
ω,mi

(EP̂ ∗−i(·|ω)[(x̂i(mi,m−i)− x̂i(m0
i ,m−i))(ui(ωi)− u′i(ωi))])2

) 1
2

=

(∑
ω

(∑
mi

EP̂ ∗−i(·|ω)[x̂i(mi,m−i)− x̂i(m0
i ,m−i)]

2

)
(ui(ωi)− u′i(ωi))2

) 1
2

≤
√
|M̂i|

(∑
ω

(ui(ωi)− u′i(ωi))2

) 1
2

<

√
|M̂i|ε,
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where the inequality follows from |EP̂ ∗−i(·|ω)[x̂i(mi,m−i)−x̂i(m0
i ,m−i)]| ≤ 1, and

thus
∑

mi
EP̂ ∗−i(·|ω)[x̂i(mi,m−i) − x̂i(m0

i ,m−i)]
2 ≤ |M̂i|. From the reverse trian-

gle inequality, we know that |‖Φ(P̂i, T̂i;ui)‖ − ‖Φ(P̂i, T̂i;u
′
i)‖| ≤ ‖Φ(P̂i, T̂i;ui)−

Φ(P̂i, T̂i;u
′
i)‖ <

√
|M̂i|ε < δ, where the last inequality comes from the defini-

tion of ε. This rewrites as |δ−‖Φ(P̂i, T̂i;u
′
i)‖| < δ, which implies ‖Φ(P̂i, T̂i;u

′
i)‖ >

0 and u′i ∈ Ui\U0
i . Hence Ui\U0

i is open, and the system of FOCs for i has an IS
solution only for a set of preferences U0

i whose closure has Lebesgue measure
zero.

Proof of Necessity with Assumption 4. Suppose that Assumption 4 holds
(as in the entropic case), and consider again the system of FOCs (?). Under
Assumption 4, the marginal cost

∂c(P̂i)

∂P̂i(mi|ωi)µ0(ω)

must be independent of ω−i at an IS choice rule P̂i(·|ωi).32 If that were not the
case, an optimal choice rule might still depend on ω−i even if an agent’s gross
payoff does not, neither directly nor indirectly.

Subtracting the FOC associated with message mi in state (ωi, ω−i) from the
one associated with same message mi but in state (ωi, ω

′
−i) yields

EP̂ ∗−i(·|ω−i)−P̂ ∗−i(·|ω′−i)
[
x̂i(mi,m−i)− x̂i(m0

i ,m−i)
]
ui(ωi)

− EP̂ ∗−i(·|ω−i)−P̂ ∗−i(·|ω′−i)
[
t̂i(mi,m−i)− t̂i(m0

i ,m−i)
]

= 0.

Now consider the same equation but associated with state ω′i. Subtracting it

32For instance, under the entropic cost,

∂c(P̂i)

∂P̂i(mi|ωi)µ0(ω)
= log

[
P̂i(mi|ωi)∑
ω′i
P̂i(mi|ω′i)

]
.
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from the previous expression yields

EP̂ ∗−i(·|ω−i)−P̂ ∗−i(·|ω′−i)
[
(x̂i(mi,m−i)− x̂i(m0

i ,m−i))
]

(ui(ωi)− ui(ω′i)) = 0.

Since the mechanism is not de facto separable, we know that the first term is
different from zero for at least one message mi. Hence the solution to agent i’s
system of FOCs is IS only if ui(ωi) is constant.

Proof of Sufficiency. We now prove that if both the outcome and transfer
functions of Γ are separable, then all equilibria of Γ are Informationally Sim-
ple. Outcome and transfer functions being separable means that the way an
agent i impacts her outcome/transfer only depends on her messages. For-
mally, there exist mappings Xi : Mi ×Mi −→ [−1, 1] and Ti : Mi ×Mi −→ R
for all i such that

xi(mi,m−i)− xi(m′i,m−i) = Xi(mi,m
′
i)

ti(mi,m−i)− ti(m′i,m−i) = Ti(mi,m
′
i)

for all m−i. Consider some agent i, who takes as given others’ strategy P ∗−i.
Her objective is∑

ω∈Ω

µ0(ω)EPi(·|ω),P ∗−i(·|ω)

[
xi(mi,m−i)ui(ωi)− ti(mi,m−i)

]
− c(Pi).

Since in each state ω her choice rule must sum to one
∑

mi
Pi(mi|ω) = 1, we

can normalize agent i’s utility by her expected utility from sending some ar-
bitrarily chosen message m0

i ∈Mi:∑
ω∈Ω

µ0(ω)EPi,P ∗−i
[
(xi(mi,m−i)− xi(m0

i ,m−i))ui(ωi)− (ti(mi,m−i)− ti(m0
i ,m−i))

]
+
∑
ω∈Ω

µ0(ω)EP ∗−i
[
xi(m

0
i ,m−i)ui(ωi)− ti(m0

i ,m−i)
]
− c(Pi).

So what matters for agent i is the relative payoff she gets under the different
messages she can send. Since the mechanism is separable, her objective can
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be equivalently expressed as∑
ω∈Ω

µ0(ω)EPi(·|ω)

[
Xi(mi,m

0
i )ui(ωi)− Ti(mi,m

0
i )
]
− c(Pi).

This formulation makes it clear that the relative value agent i gets from send-
ing message mi in state ω = (ωi, ω−i) only depends on ωi and not on ω−i. By
Assumption 4, agent i’s optimal choice rule must be independent of payoff-
irrelevant states: P ∗i (·|ωi, ω−i) = P ∗i (·|ωi, ω′−i) for all ωi, ω−i, ω′−i. This holds for
all agents, and thus all equilibria of Γ must be informationally simple.

Proof of Proposition 1. Let UIS(κ) ⊆ ×i
Ui be the set of utility functions for

which (i) there exists an IS equilibrium P ∗ of Γ, and (ii) Γ is not de facto sepa-
rable under P ∗.

The case with κ = 0 is the baseline case considered in this paper, for which
Theorem 1 applies: UIS(0) has Lebesgue measure zero, hence ρ(0) = 0.

To show that ρ is increasing, we prove that for any κ, κ′ with κ′ ≥ κ,
UIS(κ) ⊆ UIS(κ′). Take any u ∈ UIS(κ). By definition, we know that there
exists a non-separable IS equilibrium P ∗. We need to show that P ∗ remains
an equilibrium if we increase the fixed cost from κ to κ′. Now that we have
introduced a discontinuity in the objective function of agents, the FOCs (?) are
not sufficient to characterize an equilibrium. There are two possible types of
equilibrium strategies for an agent: either she learns about others or not. If she
does, then her strategy must satisfy (?). If she does not, then her IS strategy
must solve:

Eµ−i0

(
EP ∗−i(·|ω−i)

[
xi(mi,m−i)ui(ωi)− ti(mi,m−i)

]
+
γi(ω)

µ0(ω)
− ∂c(P ∗i )

∂P ∗i (mi|ω)µ0(ω)

)
= 0

for all ωi and all mi ∈ suppP ∗i . These two sets of FOCs define two possible
equilibrium strategies for agent i, yielding two different expected payoffs. In
equilibrium, agent i learns about others only if the gap between these two
expected payoffs ∆(u) more than compensate the fixed cost κ. Since P ∗ is
informationally simple by assumption, we know that this gap is lower than
κ. It is hence also lower than κ′, and P ∗ remains a equilibrium under κ′: u ∈
UIS(κ′), for all u ∈ UIS(κ).
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Finally, we show that ρ is continuous in κ. By contradiction, suppose it is
not: there exists κ∗ and δ > 0 such that, for all ε > 0, either ρ(κ∗) − ρ(κ∗ −
ε) > δ or ρ(κ∗ + ε) − ρ(κ∗) > δ. Consider the latter case33 — the function ρ

discontinuously jumps up at κ∗ — and pick any ε > 0. By assumption there is
a difference of at least δ between the Lebesgue measure of UIS(κ∗+ ε) and that
of UIS(κ∗). Consider any u ∈ UIS(κ∗ + ε) \ UIS(κ∗). For these utility functions,
there exists a non-separable IS equilibrium P ∗ under κ∗ + ε but not under κ∗.
Hence κ∗ < ∆(u) < κ∗ + ε: for at least one agent i, it is worth learning about
others given that they play P ∗−i if the associated fixed cost is κ∗ but not if it is
κ∗ + ε. As ε tends to zero, this means that any u ∈ UIS(κ∗ + ε) \ UIS(κ∗) must
satisfy ∆(u) = κ∗. This equality defines a manifold of dimension strictly less
than |Ωi| in the domain of i’s preferences, and hence the Lebesgue measure of
the set of utility functions satisfying it is zero. This contradicts the assumption
that the measure of UIS(κ∗ + ε) \ UIS(κ∗) must be above δ even for vanishing
ε.

Proof of Proposition 2. Let P ∗ be an equilibrium in dominant strategy of Γ. That
means P ∗i is an optimal strategy for agent i, irrespective of other agents’ strat-
egy:

P ∗i ∈ arg max
Pi

∑
ω

µ0(ω)EPi(·|ω),P−i(·|ω)[xi(mi,m−i)ui(ωi)− ti(mi,m−i)]− c(Pi)

for all P−i. In particular, P ∗i is optimal when others’ strategy is independent
of the state, i.e. when P−i(·|ω) = P−i(·|ω′) for all ω, ω′. This requires

P ∗i ∈ arg max
Pi

∑
ω

µ0(ω)EPi(·|ω)

(
EP−i(·)[xi(mi,m−i)]ui(ωi)− EP−i(·)[ti(mi,m−i)]

)
−c(Pi).

Note however that in such case, the value of reporting a particular message
mi is state ω equals EP−i(·)[xi(mi,m−i)]ui(ωi) − EP−i(·)[ti(mi,m−i)], and is al-
ways independent of ω−i. Hence, by Assumption 4, agent i’s optimal choice
rule does not depend on the payoff-irrelevant dimensions ω−i: P ∗i is informa-

33The proof is similar for the other case.
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tionally simple.
The same argument holds for all agents, and so if P ∗ is an equilibrium in

dominant strategy of Γ then P ∗ is informationally simple.

Proof of Theorem 2. The proof of Theorem 2 uses the same techniques as that of
Theorem 1. We find necessary conditions for full surplus extraction that are
non generic in the space of preferences. By assumption, there is at least one
agent i for whom it is efficient to acquire some information. From now on,
we restrict attention to this agent i, and take as given that all others play their
efficient strategy P †−i. We show that it is generically impossible to induce i to
choose her efficient strategy P †i while extracting all surplus from her.

Agent i’s efficient strategy P †i solves

max
Pi∈Pi

∑
ω∈Ω

µ0(ω)
∑

µi∈suppPi

Pi(µi|ω)EP †−i(·|ω)

[∑
j∈N

x∗j(µ)uj(ωj)

]
− c(Pi).

Recall that beliefs µi in the support of a choice rule Pi need to be consis-
tent with the choice rule. Hence, a marginal change in Pi(µi|ω)µ0(ω) also
marginally changes µi. However such small change in belief has no effect on
the ex post efficient allocation x∗(µi, µ−i) at belief profiles that are part of the
efficient strategy (µi, µ−i) ∈×i

suppP †i . Indeed, for a marginal change in be-
lief µi to change the efficient allocation x∗(µi, µ−i), it has to be that at that belief
profile, two agents have the exact same expected valuation for the good. But
then some agent could acquire a bit less information—that is, we could garble
that agent’s choice rule with ε noise—so as to strictly reduce her information
cost without affecting overall gross welfare.

The FOC with respect to Pi(µi|ω)µ0(ω) then writes

EP †−i(·|ω)

[∑
j∈N

x∗j(µi, µ−i)uj(ωj)

]
− ∂c(Pi)

∂Pi(µi|ω)µ0(ω)
+
ζi(ω)

µ0(ω)
= 0,(1)

for all µi ∈ suppPi and for all ω ∈ Ω, where ζi(ω) is the Lagrange multiplier
associated with the constraint that Pi(·|ω) sums to one. Hence agent i’s effi-
cient stochastic choice rule P †i must satisfy the above system of equations, as
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well as the constraints that∑
µi

Pi(µi|ω)− 1 = 0 ∀ω.(1’)

Now suppose there exists a mechanism that extracts full surplus. Such
mechanism must lead each agent to acquire the efficient level of information
P †i . Without loss, this mechanism can be written down as a direct revelation
mechanism in which agents report their information Mi = suppP †i , and the
mechanism implements the efficient allocation given reported beliefs. The
FOCs for the individual decision problem write

EP †−i(·|ω)

[
x∗i (µ)ui(ωi)− ti(µi, µ−i)

]
− ∂c(Pi)

∂Pi(µi|ω)µ0(ω)
+
γi(ω)

µ0(ω)
= 0.(2)

Surplus extraction requires that the information strategy chosen by the agent
coincides with P †i . Hence P †i must solve both (1) and (2). Subtracting (2) from
(1) yields:

∑
µ−i

P †−i(µ−i|ω)ti(µi, µ−i) = −
∑
µ−i

P †−i(µ−i|ω)
∑
j 6=i

x∗j(µ)uj(ωj)−
ζi(ω)− γi(ω)

µ0(ω)

which implies:

E
µ0,P

†
−i(·|ω)

[ti(µi, µ−i)] = −E
µ0,P

†
−i(·|ω)

∑
j 6=i

x∗j (µ)uj(ωj)

−∑
ω∈Ω

(
ζi(ω)− γi(ω)

)
.(3)

Hence efficient information acquisition requires a VCG mechanism, in which
agent i’s expected transfer given her report µi equals the expected payoff that
all other agents get when i reports µi. Since, with these transfers, the solutions
to both systems of FOCs coincide and equal P †i , the Lagrange multipliers also
coincide: ζi(ω) = γi(ω) for all ω. To extract full surplus from agent i, her
expected transfer must sum to her net utility:

Eµ0,P †(·|ω)[ti(µi, µ−i)] = Eµ0,P †(·|ω) [x∗i (µ)ui(ωi)]− c(P †i ).(4)
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Transfers must extract the agent’s expected utility given her type while com-
pensating her for the ex-ante investment in information acquisition. Not com-
pensating for these costs would violate the ex-ante IR constraint. Combining
(3) and (4), (P †i )i must solve:

Eµ0,P †(·|ω)

[∑
j∈N

x∗j(µ)uj(ωj)

]
= c(P †i ).

Finally taking expectations over µi and ω in equation (1) yields:

Eµ0,P †(·|ω)

[∑
j∈N

x∗j(µ)uj(ωj)

]
= Eµ0,P

†
i (·|ω)

[
∂c(P †i )

∂P †i (µi|ω)µ0(ω)

]
−
∑
ω∈Ω

ζi(ω).

Combining the above two equations entails that P †i must solve:

Eµ0,P
†
i (·|ω)

[
∂c(P †i )

∂P †i (µi|ω)µ0(ω)

]
−
∑
ω∈Ω

ζi(ω)− c(P †i ) = 0.(5)

That is, they together require that the total cost of information equals the ex-
pected marginal cost at the efficient solution. We show that this condition,
however, is non-generic.

Let Φ̂ be the functional which maps a choice rule for i, Lagrange multipli-
ers and preferences to the LHS of the system of equations (1) and constraints
(1’), as well as to the LHS of equation (5). Hence the necessary conditions
(1), (1’) and (5) for full extraction of agent i’s surplus are jointly written as
Φ̂(Pi, ζi;u) = 0. As in the proof of Theorem 1, we leverage the Transversality
theorem and Regular Value theorem to show that the set Φ̂−1(0;u) is empty
for almost all u ∈ U .

In order to apply the Transversality theorem we need to show that 0 is a
regular value of Φ̂, i.e., that the number of locally linearly independent equa-
tions of the system evaluated at 0 is maximal:

Φ̂(Pi, ζi;u) = 0 =⇒ rankDΦ̂(Pi, ζi;u) = 1 + |Ω| × (| suppP †i |+ 1),
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whereDΦ̂(P, ζ;u) is the Jacobian, and has as many rows as there are equations
in the systems (1), (1’) and (5). We need to show that all its rows are linearly
independent. The Jacobian has |Ω| × (| suppP †i | + 1) +

∑
j |Ωj| columns, each

corresponding to the derivative w.r.t. each element of (Pi, ζi;u). Ignoring the
row that corresponds to equation (5) for now, it equals

∂Pi ∂ζi(ω) ∂ζi(ω
′) . . . ∂ui(ω) ∂uj(ω) . . . ∂ui(ω

′)

(1)ω,µi

(1)ω,µ′i

...

(1)ω′,µi

(1)ω′,µ′i

...

(1’)ω

(1’)ω′

...



1
µ0(ω)

0 . . . E
P
†
−i(·|ω)

(x∗i (µi, µ−i)) E
P
†
−i(·|ω)

(x∗j (µi, µ−i)) . . .

1
µ0(ω)

0 E
P
†
−i(·|ω)

(x∗i (µ′i, µ−i)) E
P
†
−i(·|ω)

(x∗j (µ′i, µ−i))

−H
...

...
. . .

0 1
µ0(ω′) . . . 0 0 E

P
†
−i(·|ω

′)
(x∗i (µi, µ−i))

0 1
µ0(ω′) 0 0 E

P
†
−i(·|ω

′)
(x∗i (µ′i, µ−i))

...
...

...

1 0 . . . 0 . . .

0 1 0 . . .

...
. . .



The columns to the left, which correspond to derivatives w.r.t. Pi, equal the
Hessian H of the cost of information as Pi only enters agent i’s FOCs through
the marginal cost:

H =

[
∂2c(Pi)

∂Pi(µi|ω)µ0(ω)∂Pi(µ′i|ω′)µ0(ω′)

]
((µi,ω),(µ′i,ω

′))

.

Note that columns corresponding to the derivatives w.r.t. uj(ω) for some agent
j and state ω equal the probability that j gets the good in state ω given P †−i, for
each possible report of agent i. It follows directly from Blackwell’s principle
of irrelevant information that the rows of the above matrix are linearly inde-
pendent: the efficient allocation must vary with i’s report if it is efficient for i
to acquire some information.

The key element to prove is that the full surplus extraction condition (5)
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imposes additional restrictions on P †i . That is, we need to prove that the
derivative of the LHS of (5) w.r.t. (Pi, ζi, u) is linearly independent from the
rows in the above matrix. The derivative of the LHS of (5) w.r.t. Pi(µi|ω), ζi(ω)

and ui(ω) equal

∑
ω′

µ0(ω′)
∑
µ′i

Pi(µ
′
i|ω′)

∂2c(Pi)

∂Pi(µ′i|ω)µ0(ω′)∂Pi(µi|ω)µ0(ω)
, −1, and 0, respectively.

To replicate the derivative w.r.t. Pi from a linear combination of the above ma-
trix, we would need to sum all rows corresponding to the system of equations
(1), weighting each row (1)ω,µi by µ0(ω)P †i (µi|ω). However, this linear combi-
nation also replicates the columns corresponding to derivatives w.r.t. u only
if Eµ0,P

†
i ,P
†
−i

[x∗j(µ)] = 0 for all j, i.e., only if no agent gets the good with posi-
tive probability under the efficient solution. That cannot be true if it is socially
efficient for agent i to acquire some information.

Thus the Jacobian of Φ̂ at the efficient solution has full rank, and 0 is a
regular value of Φ̂. The Transversality theorem states that, except for a nullset
U0 ⊂ U of preferences, 0 is a regular value of Φ̂(·;u). Then by the Regular
Value theorem, Φ̂−1(0;u) is a smooth manifold of dimension

dim Φ̂−1(0;u) = |Ω| × (| suppP †i |+ 1)−
(

1 + |Ω| × (| suppP †i |+ 1)
)
< 0.

Therefore we conclude that for a full measure set of preferences u ∈ U \U0,
the set of choice rules for i solving (1), (1’) and (5) is empty. In other words, for
all preferences in U \ U0, it is impossible for the designer to both incentivize
agent i to choose the efficient strategy and extract all surplus from i.

We have left to show that the set of preferences U0 for which full surplus
extraction is feasible, is closed. This can be done using the same argument
as in the proof of Theorem 1, and we omit the formal proof for the sake of
brevity.
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